
git
workflows
(for collaboration)

AKA Everyone Works On Master/Main
AKA The Most Basic Workflow Possible

The simplest collaborative workflow is to have
everyone work on the master branch (or main, or any
other SINGLE branch).

It's straightforward and can work for tiny teams, but it
has quite a few shortcomings!

Centralized
Workflow

master

Pamela clones the repo

master

David clones the repo

master

Forrest clones the repo

master

Forrest gets to work on a
new feature! Adding and
Committing all day long!

master

Forrest now pushes up his
new work to Github

master

Pamela has also been
hard at work on her own
new feature.

Failed to push. Updates were rejected
because the tip of your current branch is
behind its remote counterpart. Merge the
remote changes (e.g. 'git pull') before
pushing again.

master

She tries to push her new
work up to Github, but she
runs into trouble!

master

So she pulls to get the
changes from origin master

Forrest's work must be
merged in. Hopefully this
goes relatively smoothly!

master

Now that she has merged the
latest work from Github, she
can push her master branch up!

David working on a new feature, but is
having some doubts.

He'd like to share his commits with the
rest of the team to start a discussion.

master

Before he can even share these iffy
commits, he has to pull from Github
and merge them in to master

master

Now he can finally push his work up to
Github. His teammates can pull to get
his new commits.

master

Lots of time spent resolving conflicts and merging
code, especially as team size scales up.
No one can work on anything without disturbing the
main codebase. How do you try adding something
radically different in? How do you experiment?
The only way to collaborate on a feature together with
another teammate is to push incomplete code to
master. Other teammates now have broken code...

While it's nice and easy to only work on the master branch,
this leads to some serious issues on teams!

The Problem

DON'T WORK ON MASTER SILLY GOOSE!

Enter
Feature

Branches

Treat master/main branch as the official project history
Multiple teammates can collaborate on a single
feature and share code back and forth without
polluting the master/main branch
Master/main branch won't contain broken code (or at
least, it won't unless someone messes up)

Rather than working directly on master/main, all new
development should be done on separate branches!

Feature Branches

master

Forrest clones the repo

master

Pamela clones the repo

master

David clones the repo

master

David starts work on a new
feature. He does all this work
on a separate branch!

add-dark-theme

master

David wants Pamela to take a look
at his new feature. Instead of
merging it into master, he just pushes
his feature branch up to Github!

add-dark-theme

master

Pamela is hard at work on her own
new feature. Just like everyone else,
she's working on a separate feature
branch rather than master.

animated-scroll

master

Pamela hears from David that he
wants her to take a look at his new
work. She pulls down his feature
branch from Github.

animated-scroll

add-dark-theme

Pamela takes a look at the code and
makes a couple improvements of her
own. She adds/commits on the same
feature branch.

master

animated-scroll

add-dark-theme

Pamela pushes up her new work on
the add-dark-theme feature branch
so that David can pull them down.

master

animated-scroll

add-dark-theme

master

David returns to work the next
morning. After an hour on reddit he
decides he should actually do some
work.

add-dark-theme

master

David fetches from Github and sees
that there is new work on the add-
dark-theme branch. He pulls the
changes down and continues work.

add-dark-theme

master

David decides he is happy with the
new feature, so he merges it into
master!

*At a real company, you don't just
decide you are "happy with" a feature.
There are mechanisms for code
approval and merging we'll discuss
shortly!

master

David pushes up the updated master
branch to Github. The others can
now pull down the changes.

There are many different approaches for naming feature
branches. Often you'll see branch names that include
slashes like bug/fix-scroll or feature/login-form or
feat/button/enable-pointer-events

Specific teams and projects usually have their own
branch naming conventions. To keep these slides simple
and concise, I'm just going to ignore those best-
practices for now.

Feature
Branch Naming

Merge at will, without any sort of discussion with
teammates. JUST DO IT WHENEVER YOU WANT.
Send an email or chat message or something to your
team to discuss if the changes should be merged in.

Pull Requests!

At some point new the work on feature branches will
need to be merged in to the master branch!

There are a couple of options for how to do this...

1.

2.

3.

Merging In
Feature Branches

Pull Requests are a feature built in to products like Github
& Bitbucket. They are not native to Git itself.

They allow developers to alert team-members to new
work that needs to be reviewed. They provide a
mechanism to approve or reject the work on a given
branch. They also help facilitate discussion and
feedback on the specified commits.

"I have this new stuff I want to merge in to the master
branch...what do you all think about it?"

Pull Requests

Do some work locally on a feature branch
Push up the feature branch to Github
Open a pull request using the feature branch just
pushed up to Github
Wait for the PR to be approved and merged. Start a
discussion on the PR. This part depends on the team
structure.

1.
2.

3.

4.

The Workflow

master

I push my feature branch up to
Github, so that I can open a Pull
Request

my-new-feature

my-new-feature

master

My Github

my-new-feature

master

My Github

I click the PR button

My Github

My Boss's Github...

My boss leaves some feedback for me. She asks me to make a
couple changes before she merges the pull request.

Boss

I can respond! We can discuss and give feedback!

My Boss's Github...

Once I make the requested changes, my boss (or whoever is in
charge of merging) can merge in my pull request!

Once I make the requested changes, my boss (or whoever is in
charge of merging) can merge in my pull request!

The above text will be used in the resulting merge commit.

My Boss's Github...

My Boss's Github...

The changes from the my-new-feature branch have now been
merged into the master branch!!!

My Boss's Github...

Just like any other merge, sometimes there are conflicts that need
to be resolved when merging a pull request. This is fine. Don't panic.

You can perform the merge and fix the conflicts on the command

line like normal, or you can use Github's interactive editor.

My Boss's Local Machine

My boss can merge the branch and resolve the conflicts locally...

git fetch origin❯

git switch my-new-feature

git merge master

fix conflicts!

❯

❯

❯

git switch master❯

git merge my-new-feature

git push origin master
❯

❯

Switch to the branch in
question. Merge in master
and resolve the conflicts.

Switch to master. Merge in
the feature branch (now
with no conflicts). Push
changes up to Github.

Don't Worry
Github Gives You Instructions
If You Forget What To Do!

When merging, we can perform a Squash & Merge
which will reduce all the commits from the feature

branch down into a single commit on master.

My Boss's Github...

My boss can also decide to close my PR instead :(

Pull Requests are a fancy way of requesting changes
from one branch be merged into another branch.

Tools like Github & Bitbucket allow us to generate pull
requests via an online interface. Team members can then
view the changes and decide to merge them in or reject
them. PR's also provide a place to discuss the changes
and provide feedback.

Recap-ing

Pull Requests

The "fork & clone" workflow is different from anything
we've seen so far. Instead of just one centralized Github
repository, every developer has their own Github
repository in addition to the "main" repo. Developers
make changes and push to their own forks before making
pull requests.

It's very commonly used on large open-source projects
where there may be thousands of contributors with only a
couple maintainers.

Fork & Clone:

Another Workflow

Github (and similar tools) allow us to create personal
copies of other peoples' repositories. We call those
copies a "fork" of the original.

When we fork a repo, we're basically asking Github
"Make me my own copy of this repo please"

As with pull requests, forking is not a Git feature. The
ability to fork is implemented by Github.

Forking

This repo is not mine. I want a copy!

I click the "fork" button

Now I have my very own copy!

The original repo...

My newly-created fork...

Now that I've forked, I have my very own copy of the
repo where I can do whatever I want!

I can clone my fork and make changes, add features,
and break things without fear of disturbing the original
repository.

If I do want to share my work, I can make a pull request
from my fork to the original repo.

Now What?

master

Pamela is hard at work on her own
new feature. Just like everyone else,
she's working on a separate feature
branch rather than master.

animated-scroll

The Official Project Repo

My Fork Taylor's Fork Lupe's Fork

Taylor's Fork Lupe's Fork

The Official Project Repo

My Fork

My Local Machine

Github

I make a clone of my forked repository
so that I can start working on it locally

When we clone a repo, Git automatically
adds a remote called origin that points to

our forked repo on Github.

The Official Project Repo

My Fork

My Local Machine

Github

origin

Next, I add a remote pointing to the original
project repo (NOT the fork). This remote can be
named anything, but you'll often see "upstream"
or "original" used.

The Official Project Repo

My Fork

My Local Machine

Github

upstream

origin

I do some new work locally. Normally, I
would work on a feature branch, but only to
keep the diagrams simpler I'm not going to!

The Official Project Repo

My Fork

My Local Machine

Github

upstream

origin

To share my changes with others, I cannot
push to upstream. I don't have permission!
But I can push to origin (my Github fork)

The Official Project Repo

My Fork

My Local Machine

Github

origin

Next, I can make a pull request from my fork
on Github to the original project repository

The Official Project Repo

My Fork

My Local Machine

Github

Pull Request

Now I wait to hear from the project maintainers! Do
they want me to make further changes? It turns out
they accept and merge my pull request! Woohoo! The Official Project Repo

My Fork

My Local Machine

Github

Pull Request
Accepted!!!

The next day, I get back to work. The official
project repo now contains work done by other
collaborators. I don't have their new work on my
machine! I'm behind!

The Official Project Repo

My Fork

My Local Machine

Github

origin

upstream

All I need to do is pull from upstream

 (the original repo) to get the latest
changes in my local repo.

The Official Project Repo

My Local Machine

Github

My Fork

origin

upstream

Now I have the latest changes from
the upstream repo! I can work on
some new features locally without
working about being out of date.

The Official Project Repo

My Local Machine

Github

My Fork

The Official Project Repo

My Fork

My Local Machine

Github

Pull

Push

Pull

Request

I fork the original project repo on Github
I clone my fork to my local machine
I add a remote pointing to the original project repo.
This remote is often named upstream.
I make changes and add/commit on a feature
branch on my local machine
I push up my new feature branch to my forked repo
(usually called origin)
I open a pull request to the original project repo
containing the new work on my forked repo
Hopefully the pull request is accepted and my
changes are merged in!

1.
2.
3.

4.

5.

6.

7.

To Summarize!

FORK THE PROJECT
CLONE THE FORK
ADD UPSTREAM REMOTE
DO SOME WORK
PUSH TO ORIGIN
OPEN PR

1.
2.
3.
4.
5.
6.

An Even

Briefer Summary

