
Rebasing

Rebasing
When I first learned Git, I was
told to avoid rebasing at all
costs.

"It can really #%@* things up"

"It's not for beginners!"

Rebasing
So I avoided the git rebase

command for YEARS!

Rebasing
It's actually very useful, as
long as you know when NOT
to use it!

Rebasing
There are two main ways to
use the git rebase command:

- as an alternative to merging
- as a cleanup tool

I'm working on a collaborative project

Master

I make a feature branch!

Master

Feature

I do some work on the branch
Master

Feature

I do some more work
Master

Feature

Master has new work on it!
Master

Feature

My feature branch doesn't have this work!

I merge master into feature

Master

Feature

This results in a new merge commit

I keep working on my feature branch
Master

Feature

A coworker adds new work to master

Master

Feature

I merge master in to my feature branch

Master

Feature

This results in yet another merge commit!

Master

Feature

The feature branch has a bunch of merge
commits. If the master branch is very active,
my feature branch's history is muddied

Feature

Master

Master

Feature

Rebasing!
We can instead rebase the feature branch
onto the master branch. This moves the
entire feature branch so that it BEGINS at
the tip of the master branch. All of the work
is still there, but we have re-written history.

Instead of using a merge commit, rebasing
rewrites history by creating new commits for
each of the original feature branch commits.

git switch feature
git rebase master

❯

❯

Feature

Master

Master

Feature

Rebasing!

We can also wait until we are done with a
feature and then rebase the feature branch
onto the master branch.

git switch feature
git rebase master

❯

❯

Why Rebase?
We get a much cleaner project
history. No unnecessary merge
commits! We end up with a linear
project history.

WARNING!
Never rebase commits that have been shared with
others. If you have already pushed commits up to
Github...DO NOT rebase them unless you are positive
no one on the team is using those commits.

SERIOUSLY!
You do not want to rewrite any git history that other

people already have. It's a pain to reconcile the

alternate histories!

Rebasing
There are two main ways to
use the git rebase command:
- as an alternative to merging
- as a cleanup tool

Rewriting History
Sometimes we want to rewrite,
delete, rename, or even reorder
commits (before sharing them)
We can do this using git rebase!

Interactive Rebase
Running git rebase with the -i option will enter the
interactive mode, which allows us to edit commits, add
files, drop commits, etc. Note that we need to specify how
far back we want to rewrite commits.

Also, notice that we are not rebasing onto another branch.
Instead, we are rebasing a series of commits onto the
HEAD they currently are based on.

git rebase -i HEAD~4❯

What Now?

pick - use the commit
reword - use the commit, but edit the commit message
edit - use commit, but stop for amending
fixup - use commit contents but meld it into previous
commit and discard the commit message
drop - remove commit

In our text editor, we'll see a list of commits alongside a list
of commands that we can choose from. Here are a couple
of the more commonly used commands:

pick f7f3f6d Change my name a bit
pick 310154e Update README
pick a5f4a0d Add cat-file

drop f7f3f6d Change my name a bit
pick 310154e Update README
reword a5f4a0d Add cat-file

